python-计算机视觉-OpenCV-人脸特征提取

Goal

我们将看到使用基于Haar特征的级联分类器进行人脸检测的基础。

我们将扩展眼睛检测和笑容特征提取等。

Haar基础 

使用基于Haar特征的级联分类器进行目标检测是Paul Viola和Michael Jones在2001年的论文《使用简单特征的增强级联快速目标检测》中提出的一种有效的目标检测方法。它是一种基于机器学习的方法,从大量的正面和负面图像中训练级联函数。然后,它被用来检测其他图像中的对象。

这里我们将研究人脸检测。该算法首先需要大量的正面图像(人脸图像)和负面图像(没有人脸的图像)来训练分类器。然后我们需要从中提取特征。为此,使用如下图所示的haar特性。它们就像卷积核。每个特征都是一个单一的值,由白色矩形下的像素和减去黑色矩形下的像素和得到。

Haar Features

 现在,每个内核的所有可能大小和位置都被用来计算大量的特性。(想象一下它需要多少计算量?即使是一个24x24的窗口也有超过16万个功能)。对于每一个特征的计算,我们都需要找到白色和黑色矩形下的像素之和。为了解决这个问题,他们引入了积分图像。它简化了对像素和的计算,即像素的数量可能有多大,只涉及四个像素的操作。不错,不是

Aldeo CSDN认证博客专家 Python Java 数据库
喜欢写博客的码农小青年。工作7年,从事过金融,电商,教育等行业。热爱编程,善于合作,喜欢学习,迎难而上,结交朋友。人生格言:果断出击,不断改变。
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 博客之星2020 设计师:CY__ 返回首页
实付 9.90元
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值